
VIRUS BULLETIN www.virusbtn.com

4 MARCH 2007

HIDAN AND DANGEROUS
Peter Ferrie
Symantec Security Response, USA

One of the things that almost all anti-malware researchers
have in common is a copy of Interactive DisAssembler
(IDA). It is perhaps the best tool we have for disassembling
files, since it is capable of so many important things: it
displays the file more or less as it really appears in memory,
applying relocations, and resolving imports. IDA can follow
all of the code paths and note all of the data references,
comment the API parameters, and even determine the stack
parameters.

Since some people have custom requirements, IDA also
supports a plug-in interface. Plug-ins can do many things
and control many of IDA’s actions – including directing it to
infect files.

Enter the latest member of the ever-growing W32/Chiton
family. The author of the virus calls this one ‘W32/Hidan’.

WHERE ARE YOU HIDING?
When Hidan is started for the first time, it queries the
default value of the ‘HKCR\.idb’ registry key. The virus
author assumes that if this registry key is present, then IDA
must also be present on the system. The registry key is
created when the Windows GUI version of IDA is started for
the first time. However, the command-line version of IDA
does not create this key. What’s more, there are other tools,
such as Microsoft Visual Studio, that use the same registry
key, so its presence on the system is no guarantee that IDA
is present.

Regardless of which application created the registry key, the
registry value will contain the name of the handler. In the
case of IDA, the value is ‘IDApro.Database32’. The virus
then queries the default value of its ‘shell\open\command’
subkey. The data usually contain the following string:

“<path>\idag.exe” “%1”

The virus searches this string for the second quote, while
remembering the location of the last backslash. Once the
second quote is found, the virus appends the string ‘plugins’
after the last backslash, so the string becomes
‘<path>\plugins’. This is the directory in which IDA keeps
its plug-ins.

BEND AND STRETCH
The virus decompresses and drops a plug-in file in the
plugins directory, using the (fixed) filename ‘hidan.plw’.
The file contains only the virus code.

As with the other viruses in the Chiton family, this one is
aware of the techniques that are used against viruses that
drop files, and will work around all of the commonly used
countermeasures: if a file exists already, its read-only
attribute (if any) will be removed, and the file will be
deleted. If a directory exists instead, then it will be renamed
to a random name.

The structure of the dropped file is similar to that of the
W32/OU812 member of the W32/Chiton family. However,
Hidan differs in one way: the entrypoint of the file is inside
the file header itself, which can complicate analysis slightly
(particularly when using IDA). The file is also not constant,
because the virus knows which bytes in the file header are
not used, and replaces them with a value chosen randomly
at the time of dropping the file.

After dropping the file, the virus runs the host code.

PLUGGING THE HOLE

Apart from dropping the file, the virus performs no other
actions in infected files. It simply waits until IDA loads the
viral plug-in.

When IDA starts, it loads all plug-ins that correspond to the
platform on which it is running. IDA runs on the 32-bit and
64-bit versions of Windows, and the 32-bit and 64-bit
versions of Linux. Additionally, in the Professional version
of IDA, there is a 32-bit Windows version that supports
64-bit addressing, so it is capable of loading 64-bit files on a
32-bit machine.

Each of these versions has its own plug-in format and suffix
to distinguish them. The suffix ‘plw’ means that the plug-in
is for the 32-bit Windows version of IDA; ‘x86’ means that
the plug-in is for the 64-bit Windows version; ‘p64’ means
that the plug-in is for the 32-bit Windows version of IDA
that supports 64-bit addressing. The suffix ‘plx’ means that
the plug-in is for the 32-bit Linux version of IDA, and the
suffix ‘plx64’ means that the plug-in is for the 64-bit Linux
version of IDA.

IDA SYMBOLISM

Internally, plug-ins are ordinary DLLs on the Windows
platform, or shared libraries on the Linux platform.
Plug-ins must export one special symbol, called either
‘PLUGIN’ or ‘_PLUGIN’, or it must be ordinal 1 on the
Windows platform.

The symbol is a pointer to a plug-in structure. The structure
contains a field which holds the version number of the SDK
used to produce the plug-in. That version number must
match the version that IDA is expecting, otherwise it will

VIRUS ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5MARCH 2007

refuse to load the plug-in. There are two versions of the
virus: one is compatible with IDA 4.8, and one is
compatible with IDA version 4.9. While the SDK version
did not change between IDA versions 4.9 and 5.0 (the
current version at the time of writing), the behaviour of
IDA did.

THE TERMINATOR

The plug-in structure contains three pointers to functions,
‘init’, ‘term’, and ‘run’. The init function is used to initialize
the plug-in. The term function is used to terminate the
plug-in. The run function is used to run the main part of the
plug-in.

In IDA prior to version 5.0, if a plug-in init function
returned a value of 0, which means that the plug-in cannot
or did not want to load (perhaps because the environment is
not compatible, or the file to examine is not of the correct
format, etc.), IDA would free the plug-in directly (via the
FreeLibrary() API on the Windows platform). Thus, neither
the run nor term functions would be called, so the virus
author did not include them in the virus.

However, in IDA version 5.0, if the term function pointer is
non-zero, then IDA will call the term function before calling
FreeLibrary(). Since the virus does not support this function
(there are data at that location, but not a function pointer),
the virus crashes at that point, taking IDA down with it. This
seems a silly bug just to save four bytes of zeroes.

Unfortunately, the virus has already done its work by the
time it crashes, since the init function contains the
replication code.

INITIATION CEREMONY

When the viral plug-in init function is called, it begins by
retrieving some file infection-related API addresses from
kernel32.dll, the IsFileProtected() API address from sfc.dll
(or sfc_os.dll if the platform is Windows XP/2003), and two
undocumented symbols from ida.wll (RootNode and
netnode_value in the .A version, or netnode_valstr() in the
.B version).

When the netnode API is called with the value held by the
RootNode symbol, an ANSI-format pathname is returned.
That pathname corresponds to the file being examined by
IDA. The virus converts that pathname to Unicode format,
then passes it to the IsFileProtected() API.

If the file is not protected, then it will be infected only if it
passes a very strict set of filters. These filters include the
condition that the file being examined must be a character
mode or GUI application for the Intel 386+ CPU, that the

file must have no digital certificates, and that it must have
no bytes outside of the image.

TOUCH AND GO
If the file meets the infection criteria, it will be infected. If
relocation data exist at the end of the file, the virus will
move the data to a larger offset in the file, and place its own
code in the gap that has been created. If there are no
relocation data at the end of the file, the virus code will be
placed here. The entrypoint is altered to point to the virus
code. The virus will calculate a new file checksum, if one
existed previously.

Once the infection is complete, the virus forces an exception
to occur in order to terminate the replication code and
return to the init function. The init function then returns a
value of zero to IDA, to signal that the plug-in should be
unloaded.

The interesting thing is that since IDA has already started to
load the now-infected file, the change to the entrypoint is
not visible – though the virus code can be seen if one knows
where to look for it, and if the file is reloaded, the full
changes are visible.

Of course, it would be possible for a plug-in to interfere
with all of that – the plug-in could remain in memory and
intercept disk accesses. It could also restore the host
entrypoint label and remove the viral one. However, this
seems like an even more pointless exercise than writing the
virus in the first place.

CONCLUSION
This member of the Chiton family is just a proof-of-concept
virus for a new platform, created by a virus author who
specialises in them. Given its simplicity, Hidan might be
considered to be hiding in plain sight.

W32/Chiton variant

Type: Memory-resident parasitic
appender/inserter.

Size: 1,321 bytes (.A), 1,330 bytes (.B)

Infects: Windows Portable Executable files.

Payload: None.

Removal: Delete infected files and restore them
from backup.

